搜索
最新主题
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查由 qq993273922 1/18/2016, 21:50
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 21:39
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 21:28
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 21:25
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 21:15
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 21:00
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 20:54
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 20:50
» QQ993273922长期帮助海外留学归国人员办理【国外学历学位认证 雅思托福 成绩单 大使馆公证 留学回国人员证明 签证】 等全套留学材料齐全教育部申请存档永久可查
由 qq993273922 1/18/2016, 20:47
请教数学paper 1
+2
yw46
lonely_world
6 posters
马来西亚快速数学中文论坛 :: 中学园地 :: STPM 专区 :: 数学疑难专区
第1页/共2页
请教数学paper 1
Given y=ax²+bx+c,a.b &c are postive constants. Show that the least value of y is -∆/4a where ∆=b²-4ac, & find the corresponding value of x. Sketch the graph for (1)∆>0,(2)∆<0
请问这题怎样做?
请问这题怎样做?
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
yw46- 实习版主
- 帖子数 : 42
威望 : 0
积分 : 50
注册日期 : 09-09-07
年龄 : 33
回复: 请教数学paper 1
你不觉得第二个怪怪的吗?
它的min point是在(- , + )的哦~
它的min point是在(- , + )的哦~
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
回复: 请教数学paper 1
不会啊...
b^2-4ac < 0 no real root 啊...
不能cut x-axis..
b^2-4ac < 0 no real root 啊...
不能cut x-axis..
yw46- 实习版主
- 帖子数 : 42
威望 : 0
积分 : 50
注册日期 : 09-09-07
年龄 : 33
回复: 请教数学paper 1
可是..(- , - )
两个都是-ve value哦~
真的可以酱做的啊?
两个都是-ve value哦~
真的可以酱做的啊?
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
回复: 请教数学paper 1
lonely_world 写道:可是..(- , - )
两个都是-ve value哦~
真的可以酱做的啊?
b)∆<0
最后的min. pt is ( - b/(2a) , - ∆/(4a) ),
可是你别忘了刚才的题目是∆<0 ,也就是说 ∆ is a NEGATIVE VALUE.
所以,min. pt is ( - b/(2a) , - ∆/(4a) )
= ( - b/(2a) , - NEGATIVE VALUE/(4a) ) [Since a,b,c > 0]
= ( -ve value, -(-)/(4a) )
= ( -ve value, +ve value )
他的graph (b)是对的, min pt. is ( - b/(2a) , - ∆/(4a) )= ( -ve value, +ve value )
回复: 请教数学paper 1
又有疑问了..
the roots of the equation x^2+px+q=0 differ by 4√5 and the sum of the squares of the roots is 58.Find p & q.
有人会吗?
the roots of the equation x^2+px+q=0 differ by 4√5 and the sum of the squares of the roots is 58.Find p & q.
有人会吗?
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
回复: 请教数学paper 1
SOR : a+b = -p --------- (1)
POR : ab =q --------- (2)
Given that
|a-b| =4√5 --------- (3)
a² + b² = 58 --------- (4)
From (3),
(|a-b|)² = (4√5)²
a²+b² -2ab = 80 -------- (5)
Substitute (2) and (4) into (5)
a²+b² -2ab = 80
58 - 2q = 80
q = -11 ------ (6)
From (1),
a+b = -p
(a+b)² = (-p)²
a² + b² + 2ab = p²
58 + 2q = p²
58 + 2(-11) = p²
p = √36
p = 6 or -6
Therefore, p= 6 and q= -11 or p=-6 and q= -11.
POR : ab =q --------- (2)
Given that
|a-b| =4√5 --------- (3)
a² + b² = 58 --------- (4)
From (3),
(|a-b|)² = (4√5)²
a²+b² -2ab = 80 -------- (5)
Substitute (2) and (4) into (5)
a²+b² -2ab = 80
58 - 2q = 80
q = -11 ------ (6)
From (1),
a+b = -p
(a+b)² = (-p)²
a² + b² + 2ab = p²
58 + 2q = p²
58 + 2(-11) = p²
p = √36
p = 6 or -6
Therefore, p= 6 and q= -11 or p=-6 and q= -11.
回复: 请教数学paper 1
show that the equation f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots for all real values of k. find the set of values of k for which
(a) f(x)=0 is a quadratic equation.
(b) f(x)=0 has one positive & one negative real roots.
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
(a) f(x)=0 is a quadratic equation.
(b) f(x)=0 has one positive & one negative real roots.
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
由lonely_world于12/8/2009, 16:19进行了最后一次编辑,总共编辑了1次
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
回复: 请教数学paper 1
你的f(x)=0是不是(k+1)x^2 + (2k+3)x+(k+2) = 0 ?
不过感觉上好像这问题是有问题。
Since f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots for all real values of k,
then b^2 - 4ac > 0
=> 1>0 [我很少面对k突然间不见了,通常k还是会存在。]
不过感觉上好像这问题是有问题。
Since f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots for all real values of k,
then b^2 - 4ac > 0
=> 1>0 [我很少面对k突然间不见了,通常k还是会存在。]
回复: 请教数学paper 1
has real roots(consists of different real roots & equal real roots), 应是 b^2-4ac ≥ 0
but, we get 1 > 0 就是说 different real roots ,和问题有点不符。
but, we get 1 > 0 就是说 different real roots ,和问题有点不符。
Log- 实习版主
- 帖子数 : 40
威望 : 0
积分 : 51
注册日期 : 09-09-10
地点 : perak
回复: 请教数学paper 1
之前我有点混淆,起初我觉得(a)和(b)是分开来找,其实是可以同一时间利用他们来解答。
show that the equation f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots
[f(x)=0 has real roots 意思是b^2 - 4ac ≥ 0 就是
equals to 0 or greater than 0 i.e.
equal real roots or distinct real roots]
for
all real values of k. find the set of values of k for which
f(x)=0 is a quadratic equation and has one positive & one negative real roots.
[意思是f(x) has two distinct real roots with one 1 +ve and 1 -ve real roots]
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0
b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)
f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0
x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)
The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.
Therefore, -(K+2)/(k+1)>0
(K+2)/(k+1)≤0
-2 ≤ k < -1
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2
When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]
Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2
f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)
The graph passes through points (+√1,0), (-√1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape.
show that the equation f(x)=(k+1)x^2+(2k+3)x+(k+2)=0 has real roots
[f(x)=0 has real roots 意思是b^2 - 4ac ≥ 0 就是
equals to 0 or greater than 0 i.e.
equal real roots or distinct real roots]
for
all real values of k. find the set of values of k for which
f(x)=0 is a quadratic equation and has one positive & one negative real roots.
[意思是f(x) has two distinct real roots with one 1 +ve and 1 -ve real roots]
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0
b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)
f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0
x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)
The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.
Therefore, -(K+2)/(k+1)>0
(K+2)/(k+1)≤0
-2 ≤ k < -1
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2
When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]
Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2
f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)
The graph passes through points (+√1,0), (-√1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape.
由SpeedMaths于12/15/2009, 23:21进行了最后一次编辑,总共编辑了1次
回复: 请教数学paper 1
i see,real roots ---> different OR equal real roots
Q1) 为什么 -2 ≤ k < 1 ?
不是 -2 < k < 1 ? ,
if k= -2 , get 0
but, 0 ≠ POSITIVE root
Q2) for (a), k ∈R ,k≠ -1 ?
Q1) 为什么 -2 ≤ k < 1 ?
不是 -2 < k < 1 ? ,
if k= -2 , get 0
but, 0 ≠ POSITIVE root
Q2) for (a), k ∈R ,k≠ -1 ?
Log- 实习版主
- 帖子数 : 40
威望 : 0
积分 : 51
注册日期 : 09-09-10
地点 : perak
回复: 请教数学paper 1
不好意思,
我忘了考虑Zero itself is neither positive nor negative.
Set of Positive Real Roots x is R+ = {x: x∈R, x>0}.
Solution:
f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0
b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)
f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0
x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)
The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.
Therefore, -(K+2)/(k+1)≥0
(K+2)/(k+1)<0
-2 < k < -1
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2
When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]
Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2
f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)
The graph passes through points (1,0), (-1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape.
(a) 为什么你说 k ∈R ,k≠ -1 ?
问什么你觉得k≠ -1?
你要记得 N subsets Z subsets Q subsets R。
-1∈N and also ∈R.
我忘了考虑Zero itself is neither positive nor negative.
Set of Positive Real Roots x is R+ = {x: x∈R, x>0}.
这以下是另个东西,在大学才碰到,就是说zero can be non-negative and also can be non-positive.
The non-negative numbers are the numbers that are not negative (they are positive or zero).
The non-positive numbers are the numbers that are not positive (they are negative or zero).
Solution:
f(x) = (k+1)x^2 + (k+3)x + (k+2) = 0
b^2 - 4ac = (k+3)^2 - 4(k+1)(k+2)
= 1 (Since b^2 - 4ac > 0,
then it has two distinct real roots)
f(x) = 0 => (k+1)x^2 + (k+3)x + (k+2) = 0
x = [-b ± √(b^2 - 4ac)]/2a
= [-(2k+3) ± √(1)]/2(k+1)
= -1 or -2(K+2)/2(k+1)
= -1 or -(K+2)/(k+1)
The two distinct real roots are -1 and -(K+2)/(k+1).
Since f(x) = 0 has one positive and one negative roots, then
x=-1 is negative root but x=-(K+2)/(k+1) is positive root.
Therefore, -(K+2)/(k+1)≥0
(K+2)/(k+1)<0
-2 < k < -1
Sketch the graph of f(x)=(k+1)x^2+(2k+3)x+(k+2) for k=-1 1/2.
Solution:
Substitute k=-1 1/2 into f(x), then f(x) = -1/2 x^2 + 1/2
When f(x) = 0, then the distinct roots of f(x)= 0 are x = ±√1.
When x= 0 , then f(0) = 1/2 [It is y-intercept]
Find the turning point,
f(x) = -1/2 x^2 + 1/2
f'(x) = - x = 0 => x=0, and y = 1/2
f "(x) = -1 < 0 (It is a max. point)
Therefore, (0,1/2) is a max. point)
The graph passes through points (1,0), (-1,0), and (0,1/2).
Sketch the graph based on those points with 'n' shape.
(a) 为什么你说 k ∈R ,k≠ -1 ?
问什么你觉得k≠ -1?
你要记得 N subsets Z subsets Q subsets R。
-1∈N and also ∈R.
回复: 请教数学paper 1
(a) for f(x)=0 to be a quadratic equation,
coefficient of x^2 ≠ 0,
k+1≠0
k≠ -1
∴ k∈R, k≠-1
coefficient of x^2 ≠ 0,
k+1≠0
k≠ -1
∴ k∈R, k≠-1
Log- 实习版主
- 帖子数 : 40
威望 : 0
积分 : 51
注册日期 : 09-09-10
地点 : perak
回复: 请教数学paper 1
起初我不明白你问什么,所以我就以为你该不会问没有关系这题目的问题吧?
结果我就答 k ∈R ,k = -1。
不过,我忘了解答问题(a),
还是你比较细心,我人老了...
结果我就答 k ∈R ,k = -1。
不过,我忘了解答问题(a),
还是你比较细心,我人老了...
for f(x)=0 to be a quadratic equation,
coefficient of x^2 ≠ 0,
k+1≠0
k≠ -1
∴ k∈R, k≠-1
回复: 请教数学paper 1
是咯!
physics and maths t我还可以,唯独pa & chem我比较担心。。
physics and maths t我还可以,唯独pa & chem我比较担心。。
Log- 实习版主
- 帖子数 : 40
威望 : 0
积分 : 51
注册日期 : 09-09-10
地点 : perak
回复: 请教数学paper 1
show that 1 is a zero of the polynomial f(x)=x^3 -7x^2 +7x -11. hence, find the polynomial g(x) such that f(x)=(x-1)g(x).
show that g(x) is always positive.hence, determine the set of values of x for which x^2 +17 ≤ 7x + (11/x)
[0<x ≤1]
麻烦教我这题..
show that g(x) is always positive.hence, determine the set of values of x for which x^2 +17 ≤ 7x + (11/x)
[0<x ≤1]
麻烦教我这题..
lonely_world- 实习版主
- 帖子数 : 7
威望 : 0
积分 : 9
注册日期 : 09-09-09
回复: 请教数学paper 1
不好意思哦 lonely_world, 你确定问题有抄对吗? 还是
f(x)=x^3 -7x^2 +7x -1
f(x)=x^3 -7x^2 +7x -1
jellyfish323- 实习版主
- 帖子数 : 15
威望 : 0
积分 : 15
注册日期 : 10-01-12
年龄 : 40
地点 : 马六甲
回复: 请教数学paper 1
不过看回下部分的问题,LOG 是对的 f(x)=x^3-7x^2+17x-11
jellyfish323- 实习版主
- 帖子数 : 15
威望 : 0
积分 : 15
注册日期 : 10-01-12
年龄 : 40
地点 : 马六甲
马来西亚快速数学中文论坛 :: 中学园地 :: STPM 专区 :: 数学疑难专区
第1页/共2页
您在这个论坛的权限:
您不能在这个论坛回复主题